If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(M)=-2M^2
We move all terms to the left:
(M)-(-2M^2)=0
We get rid of parentheses
2M^2+M=0
a = 2; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·2·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$M_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*2}=\frac{-2}{4} =-1/2 $$M_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*2}=\frac{0}{4} =0 $
| 4/5-1/8=c | | 5x^2-5=30x-30 | | 2(x–3)=0 | | w-199=-57 | | 10z=3z+28 | | 6-(2n-1)=1-3n | | w–199=-57 | | 1005x=20-x | | 22z-2(5z+8)=8z-(7z-28) | | k+90=3 | | H=0.5t^2+3t+2 | | 7a-11-4a=6 | | 9(8c-9)=-1351 | | 2x+1/4=3x-5/4 | | a–16=3 | | 22z-2(5z+88)=8z-(7z-28) | | -6n^2-120=-2n^2-44 | | f-15=4 | | 3x÷2=6 | | 12y=15y-18 | | -6z+3=2(z+5) | | 18(2)^5t=261 | | 3=5(x−2) | | 4x-5/6x-7=0 | | q+2=4 | | 5(r+8)=7(r+6) | | 4.95=03t | | 122=x-71 | | 6y^2-6=45 | | F(x)=7x(5x^2+4x-1) | | t-12t-28=0 | | X+6-5-2x+2=0 |